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1 INTRODUCTION

In this paper, we address the issue of making use of
spectral peak location information in a speech recog-
nition system. The cepstral features that are used in
most speech recognition systems, though perceptually
motivated, do not explicitly model spectral peak tra-
jectory information, which is a valuable clue to identi-
fying the underlying phone. We present a study that
examines the utility of using this information in speech
recognition, to augment the information present in the
cepstra.

We propose a method based on bandpass filtering
the speech signal using several filters with different
passbands, and using an adaptive IIR filter to track
the locations of the spectral peaks in each bandpass
output. This method has the advantage that along
with the estimate of the spectral peak frequency, it
also provides the energy at the spectral peaks (a fea-
ture that turns out to be quite informative). In initial
experiments, the bandpass filters were chosen to cor-
respond to the formant ranges, consequently, the loca-
tions of the spectral peaks are expected to correspond
to the locations of the formants, for voiced sounds.

We next investigated the utility of using this spec-
tral peak information to help discriminate between the
phones used in speech recognition. In order to quan-
tify the information provided by the new features (over
and above the information provided by the cepstra),
we measure the mutual information between the aug-
mented feature vector (cepstra augmented with the
new features) and the phonetic class labels, and com-
pare it to the mutual information between the classes
and the cepstra. Finally, we experimented with fea-
ture fusion techniques, where the new features were
appended to the cepstra, and a new speech recogni-
tion system was trained on the augmented features.

2 ESTIMATION OF SPECTRAL
PEAK FEATURES

We propose a method based on using an adaptive IIR,
filter for tracking the locations of the spectral peaks
in the speech signal. In order to simplify the task
of the adaptive filter, we first isolate spectral regions
of the input signal by passing it through a bank of
bandpass filters, such that each region contains only
one dominant spectral component. In initial exper-
iments, we based the choice of bandpass filters on
physio-acoustical studies that indicate that the spec-
tral peaks correspond to formant frequencies, and fur-
ther, the first three formant frequencies lie in the range
280-710 Hz, 870-2250 Hz, 2250-2890 Hz [1]. Conse-
quently, the speech signal is first filtered using a bank
of three bandpass filters, with the passbands corre-
sponding to these formant ranges, and subsequently,
an adaptive IIR filter [2] is used to track the frequency
at which the spectral energy is maximum within each
passband. The frequency response of these bandpass
filters is shown in Fig 1 - they are linear phase filters
with all three filters having the same group delay.

As mentioned earlier, this method provides both
the estimate of the spectral peaks as well as the en-
ergy at these peaks. For the voiced regions, this cor-
relates roughly with the formant frequencies and en-
ergies, however, for the unvoiced regions, the adaptive
filter essentially converges to the location of the spec-
tral peaks in these regions. Further, as the adaptive
filter is not allowed to change very abruptly, it also
enforces a relatively smooth transition in the spectral
peak locations over time.

2.1 Adaptive Filter

Denoting the outputs of the three bandpass filters as
y1(t), y2(t) and ys3(t), the adaptive filter stage identi-
fies the spectral peak in the bandlimited spectra of
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Figure 1: Frequency response of bandpass filters
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Figure 2: Adaptive filter structure
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yi(t). This adaptive filter structure has previously
been described in [2]. The basic idea is as follows: the
adaptive filter is a multiple notch IIR filter with the
notch frequencies being directly related to the filter
coefficients (each notch frequency depends on exactly
one filter coefficient). This multiple notch transfer
function is obtained by embedding several digital res-
onators in a feedback loop, with the notch frequencies
corresponding to the resonator frequencies. The goal
of the adaptive algorithm is to minimize the power of
the output of the notch filter. For the case where there
are N sinusoids in the input, and there are NV notches
in the filter transfer function, the optimal solution is
when the notch frequencies are equal to the input si-
nusoidal frequencies. In [2] an adaptive algorithm was
described that guarantees converegence under certain
conditions, and has complexity that is linear in N.

For our case, we assume that each bandpass out-
put, y;(t) has a single spectral peak and use an adap-
tive filter with a single notch to track each of the y;(t).
This filter structure is shown in Fig 2. The transfer
function from the input to various nodes in the filter
structure are given below:
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The transfer function H,(z) represents a notch filter,
with the notch frequency w; being related to the filter
coefficient, k;, through the following equation

ws
i = 2sin | —
k sm(2)

The algorithm for adapting the filter coefficient is
given by

(4)

Te(N)Tps,i(n)
< xps,i(n)xps,i(n) > +e

ki(n+1) = ki(n) — p (5)

The term z.(n)zps:(n) denotes the pseudo-gradient
of the objective funtion (the coefficient is adapted in
a direction opposite the pseudo-gradient), and the <
Zps,i(N)Tps,i(n) > +e€ denotes a power normalizing
term that modfies the gradient direction to point in
the Newton direction (i.e. the normalizing term ap-
proximates the inverse of the Hessian of the objective
function). The spectral peak location can be inferred
from the value of the filter coefficient k; after it has
converged using ( 4).

An additional feature of the filter structure is that
the transfer function Hyy; is the complement of the
notch transfer function, i.e., it represents a bandpass
transfer function with the center frequency correspond-
ing to the resonator frequency. Consequently, the power
of the signal at z s ; represents the power of the input
speech signal at this frequency.

3 MUTUAL INFORMATION
BETWEEN ACOUSTIC
FEATURE AND PHONETIC
CLASS

The usefulness of an acoustic feature may be measured
by the amount of information it provides in discrim-
inating between phonetic classes. This can be quan-
tified by the mutual information between the feature
vector and the phonetic class. Let ¢ denote the pho-
netic class, and Z denote the acoustic feature vector.
The mutual information between Z and c¢ is defined
by

1z = Yol [ wzionos |U20) az o

Though ( 6) cannot be expressed in closed form, by
vector quantizing Z and approximating the integral
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with a summation, it may be rewritten as

1(Z;¢) = ch)ZpZ/c log[ ((ZZ/)C’] (7)

We are essentially interested in measuring the amount
of information available by augmenting the usual cep-
stral feature vector with these new features. If Z rep-
resents the cepstral feature vector, and z represents
one of the new features, then an augmented feature
vector Z can be formed by concatenating Z and z.
By vector quantizing Z into the same number of code-
words as for Z, thq mutual ianormation between the
augmented vector Z and ¢, I(Z;c), can be computed
from ( 8).

I(Z;c) = Zp C)Zp Zj/c) log[ ((ZZ/;J)} (8)

The amount of information added by z can now be
computed very simply

81, = I(Z;c) — I(Z; 0) (9)

3.1 The amount of incremental infor-
mation

The baseline acoustic feature, Z, was assumed to be
the 13-dimensional Mel cepstral observation vector.
We evaluated the d1, associated with six new features,
namely, the estimates of the first two formants from
Xwaves [4], 21,22, the spectral peak locations of the
first and second adaptive filters, s1, s and the energy
at these frequencies, e1, e5. The new features were ob-
served either at the same time frame as the associated
cepstra, or at any of the 4 preceeding or following time
frames, leading to 54 sets of features. The classes, ¢
corresponded to 58 phonetic classes. The number of
feature vectors per class was limited to 20000, with the
feature vectors for all classes totalling approximately
1 million. We K-means clustered the 1 million feature
vectors to &~ 2500 gaussians and used a likelihood met-
ric to label each feature vector with the label of the
closest gaussian. Subsequently, ( 8) was used to com-
pute the mutual information between the class and the
quantized feature vectors.

The unconditional class distribution had an en-
tropy of 5.8 bits, and the mutual information asso-
ciated with the cepstra alone, I(Z;z) was 1.62 bits.
Subsequently, we evaluated the incremental mutual in-
formation, §I,, associated with each of the six new
features at 9 time frames and plotted them in Fig 3.

Several observations may be made from Fig 3:

(i) the most informative features are the the energy
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Figure 3: Incremental mutual information between
new features and phonetic classes

at the peak frequencies, ey, es. Further, the amount
of additional information provided by this new feature
is around 0.1 bits, which is not negligible when com-
pared to the 1.62 bits of information that are provided
by the cepstra.

(ii) the spectral peak estimates, s, s2 provide less in-
formation than the energy

(iii) the formant estimates provided by Xwaves seem
to add almost no information to the baseline cepstral
feature. This is surprising because the formant es-
timates, z1,x3, should nominally provide the same
amount of information as the spectral peak features,
s1, s2. One possible reason for the discrepancy is that
for the unvoiced segments of speech, the spectral peak
locations tend to be influenced by the peak location
in the preceding and following voiced segments and
tend to vary smoothly between these values within
the unvoiced segment, whereas the zi,z2 estimates
vary more or less randomly for the unvoiced segments
of speech. Consequently, even though the z1,xzs fea-
tures do not provide information in disambiguating all
phones, one could expect them to at least provide in-
formation to disambiguate speech regions with a well
defined formant structure. To verify this conjecture,
we computed the mutual information using ( 9), us-
ing data from only 8 voiced vowels, IY, TH, AE, AA,
AH, UH and UW. The entropy of the prior distribu-
tion of these 8 classes is 3 bits, and the cepstra provide
1.03 bits of information. The incremental information
provided by the new features is summarized in Fig 4.
From this figure, it may be seen that the x, 2 features
do provide the maximum amount of information.
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Figure 4: Incremental mutual information between
new features and 8 vowels

4 SPEECH RECOGNITION

Next we experimented with feature fusion techniques
to incorporate the new features into a speech recogni-
tion system. The task that we experimented on is a
Voicemail transcription task [5], which represents large
vocabulary spontaneous telephone speech. The size of
the vocabulary is 15k words, and the perplexity of the
trigram LM that was used is approximately 100. The
amount of acoustic training data available is approxi-
mately 70 hours. We present results on both a devel-
opment test set comprising of 43 voicemail messages
(approximately 20 mts of speech) and an evaluation
test set comprising of 86 voicemail messages (approx-
imately 40 mts of speech).

4.1 System overview

The speech recognition system uses a phonetic repre-
sentation of the words in the vocabulary. Each phone
is modelled with a 3-state left-to-right HMM. Further,
we identify the variants of each state that are acous-
tically dissimilar by asking questions about the pho-
netic context in which the state occurs. The questions
are arranged heirarchically in the form of a decision
tree, and its leaves correspond to the basic acoustic
units that we model. An acoustic feature vector is
extracted every 10 ms, and we model the pdf of the
feature vector for each leaf of the decision tree, with a
mixture of gaussians (our system had 2313 leaves and
34k gaussians). We experimented with using a vary-
ing number of cepstral features, and augmenting the
cepstral feature space with the new features, s1, s2, €1
and e;. Subsequently, the final acoustic feature vector
is obtained by augmenting the acoustic observation
for a given frame with its first and second temporal
derivatives.
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Figure 5: Word error rate vs feature dimension

4.2 Experimental Results

The word error rate results were computed on the
Voicemail dev and eval test set [5] and are shown in
Fig 5. The x-axis indicates the dimensionality of the
extracted feature (either number of cepstra, or num-
ber of cepstra + ej, e2, or number of cepstra + s1, $2)-
The figure shows that the (e, e5) estimates do contain
more information than the higher order (13th) cepstra
and can be used to improve the performance of the
system (by 5.7% on the dev test and 5.2% on the eval
test). The observation from Fig 4 that the (e1, e2) are
more informative than the frequency estimates (s1, s2)
themselves is also supported by the recognition results.
However, there are some inconsistencies as well - for in-
stance, Fig 4 indicates that adding s; and s, features
to the cepstra should provide more information and
help the recognition, however, this is not supported
by Fig 5. Also, all the experiments conducted so far
have been on relatively clean speech, possibly for noisy
speech, the roles of energy and frequency estimate will
be reversed, but this still remains to be established.

5 DISCUSSION

In this paper, we experimented with augmenting the
cepstral features used in a speech recognition system
with spectral peak related features. The new features
were estimated by passing the speech signal through
a bank of bandpass filters, and using an adaptive fil-
ter to track the location of the spectral peak in each
band. We also quantified the amount of incremental
information present in the new features by measur-
ing the mutual information between the augmented
feature and the phonetic classes and comparing it to



the mutual information between the cepstra and the
phonetic classes. Finally we incorporated the addi-
tional features into a speech recognition system, using
feature fusion, and showed that the new features con-
tained more information that the higher order cepstra
and could help improve the word error rate.

There are however several issues which are still
open. It is not clear that the bandpass frequency
ranges (motivated by formant frequency ranges) that
were used for these experiments are the most appro-
priate. Possible experiments for the future include
subdividing the entire frequency range into uniform
intervals and tracking the spectral peak within each
frequency range. Also, the simple feature fusion ap-
proach that was explored in this paper could probably
be considerably improved upon by the use of alterna-
tive classifier combination schemes [6, 7].
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7 APPENDIX

7.1 Comparison to Xwaves Formant Es-
timates

The bandpass filtering that preceded the spectral peak
tracking was motivated by trying to isolate different
formants, consequently, it would be interesting to ex-
amine the correlation between the spectral peaks and
the formant frequencies for vowels which have a well
defined formant structure. However, the true formant
estimates are not available for any of the data that
we experimented with, consequently, we used Xwaves
[4] to estimate the locations of the formants from the
speech signal. In Fig 6, we show the spectrogram of
the speech for one sentence from a male and female
speaker, as well as the first two formant estimates ob-
tained from Xwaves (z1, z2), and the first two spectral
peaks obtained from the adaptive filter (s1, s3). It may
be seen that both the formant estimates provided by
Xwaves and the spectral peaks tracked by the adap-
tive filter look reasonable, To validate the formant es-
timates that we obtained from Xwaves, we computed
the average fi and fa frequencies for several vowels
for one male and one female speaker, and plot them
in Fig 7. Also plotted in the same figure are the aver-
age vowel positions for average American English, as
specified in [1].
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Figure 6: Spectrogram and formant frequency esti-
mate of speech for one sentence with male and female
speakers

We also computed the correlation between the Xwaves

estimates and the adaptive filter estimates. The for-
mant frequency estimates (a:l, :cz) were computed us-
ing Xwaves and the spectral peak estimates (s1,s2)
using the adaptive filter, for 50 sentences from two
speakers, one male and one female. Subsequently, we
computed the mean and standard deviation of the dif-
ferences (z; — s;) and also the correlation between x;
and s; for different phones. The correlation coefficient
betwen z; and s; is defined as

V(E[z7] - Elz:]?)(Ela?] — Elzi]?)

p(iy i) =

The results are tabulated in Table 1. Here, mean(z;)
indicates the mean value of the z; for a given phone,
mean(z; — s;) and var(z; — s;) indicate the mean and
variance of the error between z; and s; for a given
phone expressed as a percentage of the mean(z;), and
p(x;,s;) indicates the correlation between z; and s;.
The statistics show a higher correlation between sa
and x5 than between s; and ;. However, for unvoiced
regions, the Xwaves estimates are more or less ran-
dom, whereas the adaptive filter estimates are more
consistent, in the sense that the spectral peak loca-
tions vary smoothly from the location in the preceding
voiced segment. This enables them to be used in a sim-
ple feature fusion scheme, whereas initial experiments
with using Xwaves estimates in feature fusion led to
substantial degradation in recognition performance. !.

ITn the Xwaves package, we experimented with using vari-
ous LPC orders to get the best agreement visually between a
spectrogram and the formant estimates. The best compromise
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Figure 7: Location of vowels for male, female and av-
erage speakers

[ Phone | =1 [ mean(zy —s1) % | var(e; —s1) % | p(e1,51) |
male/female

Y 359/458 8/11 11/15 0.5/0.6
IH 405/481 13/11 18/13 0.2/0.3
EH 463/574 12/14 18/18 0.4/0.2
AE 532/635 16/22 18/16 0.5/0.4
AA 515/646 16/22 16/14 0.4/0.5
AH 487/566 14/15 20/28 0.4/0.1
UH 414/526 11/5 11/20 0.6/0.6
uw 366/426 9/5 30/19 0.5/0.3

ED) mean(zg — x9) % var(zg — sg2) % p(za, s2)

male/female

IY 1997/2095 1/8 8/11 0.5/0.3
IH 1638/1753 5/14 10/10 0.8/0.7
EH 1569/1719 6/13 8/9 0.7/0.7
AE 1516/1687 10/18 12/10 0.6/0.6
AA 1161/1369 6/13 12/15 0.6/0.4
AH 1254/1433 7/15 7/13 0.9/0.6
UH 1358/1523 3/7 11/9 0.9/0.9
UwW 1393/1736 0/4 19/7 0.8/0.9

Table 1: Comparison of statistics of Xwaves formant
estimates (z1,z2) and spectral peaks (s1, s2)

7.2 Relationship between mutual infor-

mation and heteroschedastic discrim-

inant analysis

Given the reasoning in terms of mutual information
that was used in this paper, it is interesting to note
that heteroschedastic discriminant analysis (HDA) [8]
can also be interpreted in terms of the mutual infor-
mation between the projected feature vector and the
classes. Let X represent the extracted acoustic fea-
ture, and Z represent a linear transformation of this
feature, i.e., Z = A X. Our goal is now to find A
such that the mutual information between Z and c is
maximized. In ( 6) we defined the mutual information
between the feature vector Z and class ¢. However,
this expression may also be written as

I(Z;c) = H(Z) - H(Z/c) (10)

Now, assume that the c** class is modeled by a single
full covariance gaussian in the X space, G, and that
the mean and covariance of this gaussian is given by
Mes Y. Further, assume that the entire data is mod-
eled with a single full covariance gaussian with mean
and covariance pu, Y 2. Now the models for the com-
plete data and the different classes in the Z space are
also gaussians, with their means and covariances be-
ing given by A u, A ¥ AT for the complete data, and
A pe,A B, AT for the c¢** class. Further, the self-
entropy of a gaussian distribution can easily be de-
rived to be 1log|Z| + D + Llog(2r). Consequently,
( 10) may be written as

I(Z;c) = log|AS AT| = 3" P. log|A S, AT| (1)

which turns out to be almost exactly the objective
function for the HDA as described in [8].
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